Minimum Size Subarray Sum

Given an array of positive integers nums and a positive integer target, return the minimal length of a contiguous subarray [numsl, numsl+1, ..., numsr-1, numsr] of which the sum is greater than or equal to target. If there is no such subarray, return 0 instead.

 

Example 1:

Input: target = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: The subarray [4,3] has the minimal length under the problem constraint.

Example 2:

Input: target = 4, nums = [1,4,4]
Output: 1

Example 3:

Input: target = 11, nums = [1,1,1,1,1,1,1,1]
Output: 0

 

Constraints:

  • 1 <= target <= 109
  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105

 

Follow up: If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log(n)).SOLUTION:
import bisect

class Solution:
    def minSubArrayLen(self, target: int, nums: List[int]) -> int:
        n = len(nums)
        minlen = n
        sums = [0]
        found = False
        for el in nums:
            sums.append(sums[-1] + el)
        for i in range(n + 1):
            j = bisect.bisect_left(sums, sums[i] + target)
            if j < n + 1 and sums[j] - sums[i] >= target:
                found = True
                minlen = min(minlen, j - i)
        return minlen if found else 0

Comments

Popular posts from this blog

Encrypt and Decrypt Strings

Degree of an Array

Minimum Sum of Four Digit Number After Splitting Digits